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ABSTRACT

This study investigates the mechanisms by which short time-scale perturbations to atmospheric processes

can affect El Niño–Southern Oscillation (ENSO) in climate models. To this end a control simulation of

NCAR’s Community Climate System Model is compared to a simulation in which the model’s atmospheric

diabatic tendencies are perturbed every time step using a Stochastically Perturbed Parameterized Tendencies

(SPPT) scheme. The SPPT simulation compares better with ECMWF’s twentieth-century reanalysis in having

lower interannual sea surface temperature (SST) variability and more irregular transitions between El Niño
and La Niña states, as expressed by a broader, less peaked spectrum. Reduced-order linear inverse models

(LIMs) derived from the 1-month lag covariances of selected tropical variables yield good representations of

tropical interannual variability in the two simulations. In particular, the basic features of ENSO are captured

by the LIM’s least damped oscillatory eigenmode. SPPT reduces the damping time scale of this eigenmode

from 17 to 11 months, which is in better agreement with the 8 months obtained from reanalyses. This noise-

induced stabilization is consistent with perturbations to the frequency of the ENSO eigenmode and explains

the broadening of the SST spectrum (i.e., the greater ENSO irregularity). Although the improvement in

ENSO shown here was achieved through stochastic physics parameterizations, it is possible that similar

improvements could be realized through changes in deterministic parameterizations or higher numerical

resolution. It is suggested that LIMs could provide useful insight into model sensitivities, uncertainties, and

biases also in those cases.

1. Introduction

El Niño–Southern Oscillation (ENSO) is the domi-

nant mode of tropical variability on interannual time

scales. It consists of an irregular oscillation of sea surface

temperature anomalies over the tropical eastern Pacific

Ocean, with a periodicity in the 3–7-yr range. Through

atmospheric teleconnections, ENSO impacts weather

across the globe and is the leading source of skill for

seasonal and interannual forecasts. It is imperative that

general climate models (GCMs) capture this source of

predictability.

Despite the importance of ENSO, state-of-the-art

coupled climate models show a wide range of ENSO

behavior (Guilyardi et al. 2009; Flato et al. 2013), with

differences not only from model to model, but even

from one model version to the next. In general, the

models in phase 5 of the Coupled Model Intercompar-

ison Project (CMIP5) show large deficiencies in ENSO

amplitudes, spatial structures, and temporal variability

(Flato et al. 2013).

Many authors have demonstrated the importance of

small-scale atmospheric variability in ENSO dynamics

(Penland and Sardeshmukh 1995; Flügel et al. 2004; Yeh
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and Kirtman 2006). The low resolution of current cou-

pled climate models (of order 18–28) is inadequate for

capturing this small-scale variability. Increasing the

resolution has been shown to improve the representa-

tion of ENSO (e.g., Small et al. 2014) but this remains

often too computationally expensive for multidecadal

climate projections.

An alternative to represent unresolved subgridscale

variability is through the use of stochastic parame-

terization schemes (Palmer 2001). Models with such

schemes represent subgridscale atmospheric processes

as a predictable deterministic plus an unpredictable

stochastic component. Stochastic parameterizations

have been widely used in the weather and seasonal

forecasting community because of their beneficial im-

pact on probabilistic forecast reliability (e.g., Berner

et al. 2009; Leutbecher et al. 2017; Weisheimer et al.

2014). Despite their beneficial impact on weather and

seasonal predictions, the use of stochastic parameteri-

zations in climate models remains a scientific frontier

(Berner et al. 2017), since model error on longer time

scales tends to be dominated by deterministic rather

than random model error.

Of particular relevance to this study are the findings

by Christensen et al. (2017), who demonstrated that

stochastic perturbations to the atmospheric component

of the Community Climate System Model, version 4

(CCSM4), leads to remarkably improved ENSO vari-

ability in the model. Without stochastic perturbations,

themodel ENSO is too regular and too strong. Including

the stochastic perturbations improves the power spec-

trum of SSTs in the Niño-3.4 region [Fig. 1, after

Christensen et al. (2017)] and the variance of monthly

SST and wind anomalies is also in better agreement with

observations [Fig. 2, cf. Figs. 5 and 6 of Christensen et al.

(2017)]. Note that Fig. 2 shows the variance difference

of a control simulation (CNTL) from ECMWF Re-

Analysis of the 20th-Century Climate (ERA20C) in-

dicating that the variance in the control simulation is too

strong. The stochastically perturbed parameterization

tendency (SPPT) reduces the variance leading to a better

agreement with the reanalysis.

Christensen et al. (2017) proposed a number of pos-

sible mechanisms for this improvement, but a complete

understanding was outside the scope of that study. In the

present study, we will reexamine these coupled simula-

tions. Our aim is to understand how fast fluctuations on

weather time scales (as mimicked by the stochastic pa-

rameterization) can impact interannual tropical vari-

ability. In particular, we will address the mechanisms by

which perturbations to the atmosphere can

d reduce SST and wind variability, and
d broaden the spectrum of tropical SSTs, that is, in-

crease ENSO irregularity.

Note that according to the Wiener–Khinchin theorem

(e.g., Gardiner 1983), the power spectrum is the Fourier

transform of the autocovariance function, so that a

FIG. 1. Power spectrum of the Niño-3.4 index, defined as the monthly SST anomaly averaged over 58S–58N and

1708E–1208W, for HadISST2 observations (black), CNTL (blue), and SPPT (red). The top axis indicates period in

years, and the bottom axis indicates frequency in cycles permonth. The shading denotes the spectral range obtained

by sampling realizations from LIMs fitted to CNTL, SPPT, and HadISST (see text). After Christensen et al. (2017).
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change in temporal autocovariance translates directly

to a change in the spectrum.

To gain insights into the dynamical mechanisms

leading to the change in ENSO variability, we fit linear

inverse models (LIM) to the two climate simulations

and subsequently compare the LIMs governing ENSO

dynamics and its weather forcing. Linear inverse models

(Xu and von Storch 1990; Penland and Magorian 1993;

Latif et al. 1994; Wu et al. 1994; Balmaseda et al. 1995)

have been demonstrated to show excellent skill in pre-

dicting tropical SST variability (Penland and Sardeshmukh

1995; Newman et al. 2009, 2011; Alexander et al. 2008;

Newman and Sardeshmukh 2017) and have also been

applied to observed Atlantic sea surface temperatures

(Zanna 2012). In particular, the least damped oscillatory

eigenmode, or principal oscillation pattern (POP; von

Storch et al. 1988, 1995; Penland 1989) captures the basic

features of ENSO (Penland andMagorian 1993; Penland

and Sardeshmukh 1995; Gehne et al. 2014).

Kleeman (2011) performs a comprehensive spectral

analysis for a generalized class of stochastic models in-

cluding LIM and applies it to the two-dimensional sto-

chastically forced oscillator, which can be interpreted as

ENSO POP. Different from previous studies, which

mainly focus on using LIMs as predictive models, we

exploit their utility here also as a general tool to in-

vestigate model differences and model sensitivities (Shin

et al. 2010).

Given the underlying assumptions, LIMs are funda-

mentally limited to which degree they can model non-

Gaussian and nonlinear features. For example, LIMs

cannot capture the apparent greater persistence of La

Niña versus El Niño events (DiNezio andDeser 2014). In

their simplest form, the noise is assumed to be state in-

dependent, the resulting distributions Gaussian, and thus

unable to capture the skewness in, for example, the dis-

tribution of the Niño-3.4 index (Burgers and Stephenson

1999). However, the inclusion of state-dependent noise

terms enables LIMs in principle to model skewed distri-

butions (Sardeshmukh and Sura 2009).

The paper is organized as follows: the linear inverse

modeling approach is summarized in section 2. A simple

damped linear oscillator forced by white noise is used to

illustrate the impact of perturbing the damping rate and

frequency of the eigenmodes of a linear system. Datasets

and the setup for the numerical experiments are intro-

duced in section 3. Section 4 contains the results of fitting

LIMs to the coupled climate simulations, followed by a

discussion (section 5) and the conclusions (section 6).

2. Methodology and simple example

a. Damped linear system forced by additive white
noise

Before turning our attention to the evaluation of the

coupled climate simulations, we introduce the linear

FIG. 2. Variance of monthly anomalies over the period 1900–2010 for (a)v500, (d) u850, and (g) SST in ERA20C. (b),(e),(h) Difference

in variance between ERA20C and CNTL, where CNTL spans the years 1870–2004. (c),(f),(i) Difference in variance between SPPT and

CNTL for the period 1870–2004. Note that the contour interval in (c), (f), and (i) is half that of (b), (e), and (h).
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inverse modeling framework and apply it to the simple

example of the perturbed and unperturbed damped os-

cillator. Consider the following stochastically forced

damped linear system:

_x5Lx1Se , (1)

where x(t) is the temporally evolving state variable and L

is the deterministic linear feedback matrix. The external

forcing consists of the additive white-noise forcing e

with noise amplitudes given by the matrix S with com-

ponents s«,ij. A linear inverse model of a nonlinear sys-

tem is of the form in (1), in which the nonlinear tendency

terms are approximated as linear terms plus noise.

The time evolution of such a system is given by

the time-lag covariance matrix Cij(t)5 hxi(t1 t)xj(t)i
(Penland 1989):

C(t)5 eLtC(0) . (2)

In the statistically stationary state, the covariance

of the system, C0 5C(0), is completely determined by

the linear operator L and the noise covariance matrix

Q5SST (Gardiner 1983; Farrell and Ioannou 1993;

Penland and Matrosova 1994):

LC
0
1C

0
LT 1Q5 0. (3)

Equation (3) is called the Lyapunov equation and

sometimes the fluctuation–dissipation relationship

(FDR) and can be derived from the stationary solution

of the Fokker–Planck equation for a system of the form

in (1). Because C0 and Q5SST are both positive-

definite, (3) can be satisfied only if L is a stable opera-

tor (i.e., if its eigenvalues are either real and negative

or come in complex conjugate pairs with negative real

parts). Physically, (3) states that the equilibrium co-

variance of a system is given as a balance between the

stable operator—acting to drive the system toward

equilibrium—and the noise covariance matrix—forcing

the system away from equilibrium (Penland and

Matrosova 1994).

b. Damped linear system forced by additive and
multiplicative white noise

Now consider a system with the same linear feedback

matrix, but with an additional state-dependent (multi-

plicative) noise forcing h assumed to be linear in each

component of the state xi:

_x
i
5L

ij
x
j
1hs

h,ij
x
j
1s

«,ij
«
j
. (4)

Here, h is a white-noise process with zero mean and unit

standard deviation, and (4) can be written as

_x5 (L1Eh) x1Se , (5)

where the amplitudes of the multiplicative noise are

given by the matrix E with components sh,ij.

The noise in (5) is a special case of the correlated

additive and multiplicative (CAM) noise of Sardeshmukh

and Sura (2009), namely, one that is multiplicative, but

not correlated additive. Thus, the probability density of

the process in (5) will be symmetric and not skewed as

is the case for general CAM noise. For such a system,

the covariance evolution and FDR in (2)–(3) are (see

Sardeshmukh and Sura 2009)

C(t)5 eMtC
0

and (6)

MC
0
1C

0
MT 1 ~Q5 0, (7)

where the feedback matrix M and noise covariance

matrix ~Q are given as

M5L1
1

2
E2 and (8)

~Q5SST 1EC
0
ET . (9)

Note, that the effective feedback matrix M consists

now of L plus a ‘‘noise-induced drift’’ (1/2)E2. Simi-

larly, the noise covariance matrix has now two terms:

SST from the additive noise forcing, and an addi-

tional term EC0E
T from the multiplicative noise

forcing.

c. Example: The perturbed 2D-damped harmonic
oscillator forced by additive white noise

As a simple example we consider the damped har-

monic oscillator, driven by additive white noise. Its

evolution is given by (1) with

L5

�
2n v

2v 2n

�
, (10)

where n. 0 and v denote the damping rate and fre-

quency of the oscillation, respectively, and T5 2p/v is

the period.A sample time series of such a system is given

in Fig. 3a. The eigenvalues of L form the complex con-

jugate pair:

l
1,2

52n6 iv .

In the absence of forcing, the solution of each compo-

nent of the damped harmonic oscillator is given as

x(t)5 e2nt(cosvt1 i sinvt) .
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The decorrelation time or damping time td is defined as

td ,ref 5
1

n
.

The stronger the damping rate n, the smaller the

damping time td and vice versa.1 We note that the

decorrelation time is equal to the negative inverse

of the real part of the eigenvalue, so that knowing

the eigenvalues l1,2 of the feedback matrix allows

us to infer the temporal memory of the oscillator. If

v5 0, there is no oscillation and the system governed

by (10) describes two independent linearly damped

processes forced by white noise, also called red-noise

process.

If the noise is uncorrelated and has the same ampli-

tude for each component, Q5 [s2
«, 0 j 0, s2

«], we can

solve (3) for the stationary covariance matrix:

C
0,ref

5

0BBB@
s2
«

2n
0

0
s2
«

2n

1CCCA .

Next, consider the impact of perturbations to the lin-

ear operator. In particular, consider cases in which ei-

ther the damping rate n or frequency v are perturbed by

making theEmatrix in (5) nonzero. The evolution of the

perturbed system is then given by (5) with

E
d
5

 
s
h

0

0 s
h

!
and E

f
5

 
0 s

h

2s
h

0

!
,

where the subscripts ‘‘d’’ and ‘‘f ’’ denote the perturba-

tions to the damping rate and frequency, respectively.

Since E in both cases acts on the state x, the perturba-

tions are state dependent or multiplicative. Examples

for time series of the perturbed linear oscillators are

included in Fig. 3a. If the oscillator in (10) were to de-

scribe the oscillation of a pendulum, perturbing the

frequency would be analogous to changing the length of

FIG. 3. (a) Sample time series of damped linear oscillators driven by additive and perturbed by multiplicative

white noises. Oscillator with parameters damping rate n5 1/17 months and frequency v5 1/50 months driven by

additive noise (black). Oscillator with additional multiplicative perturbations to the frequency (red). Oscillator

with additional multiplicative perturbations to the damping rate (blue). The time series for the two components of

the oscillator are indicated by solid and dashed lines, respectively. For easier reading, the blue and red curves are

shifted upward by 15 and 30 units, respectively. (b) Autocorrelation and (c) autocovariance of the additively

perturbed and additively and multiplicative perturbed oscillators. The shading in (b) and (c) denotes the auto-

correlation and autocovariance of the amplitude of the oscillation, respectively. The decorrelation time td bywhich

the autocorrelation of the amplitude has decayed to 1/e (dashed line) is denoted as vertical line for each experiment.

(d) Power spectra of the three cases.

1 Note again that n refers to the damping rate and td refers to the

damping (or decorrelation) time.
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the string, while perturbing the damping rate can be in-

terpreted as changing the viscosity of the environment.

From (8) we calculate the noise-induced drift and ef-

fective feedback matrices to be

1

2
E2
d 5

1

2

 
s2
h 0

0 s2
h

!
and

1

2
E2

f 5
1

2

 
2s2

h 0

0 2s2
h

!
,

and

M
d
5

0BBB@
2n1

1

2
s2
h v

2v 2n1
1

2
s2
h

1CCCA and

M
f
5

0BBB@
2n2

1

2
s2
h v

2v 2n2
1

2
s2
h

1CCCA , (11)

with eigenvalues:

ld
1,2 52n1

1

2
s2
h 6 iv and l

f
1,2 52n2

1

2
s2
h 6 iv .

(12)

The decorrelation time for each component is computed as

the negative inverse of the real part of the eigenvalues as

td ,d 5
1

n2
1

2
s2
h

and td ,f 5
1

n1
1

2
s2
h

. (13)

It is clear that perturbing the damping rate leads to an in-

crease of temporal memory (destabilization), td ,d . td ,ref,

while perturbing the frequency leads to a decrease in

memory (stabilization), td ,f , td ,ref (Fig. 3b). This is a

direct consequence of the noise-induced drift, which acts

effectively to increase the damping (in the case of per-

turbing the frequency v) or reduce it (in the case of

perturbing the damping rate n) of the oscillation.

Finally, we compute the equilibrium covariance ma-

trices by inserting (11) into the fluctuation dissipation

relation in (7) and solving for C0:

C
0,d

5

0BBBB@
s2
«

2n2s2
h

0

0
s2
«

2n2s2
h

1CCCCA and C
0, f

5

0BBB@
s2
«

2n
0

0
s2
«

2n

1CCCA.

(14)

While for perturbations to the frequency, the equilib-

rium covariance matrix is the same as for the unperturbed

oscillation, C0,f 5C0,ref, the variance increases when the

damping rate is perturbed: C0,d .C0,ref (Fig. 3b).

The derivation reveals that the multiplicative noise in-

troduces two terms in the denominator: the noise-induced

drift and an additional term to the noise covariance ma-

trix. For perturbations to the frequency, these two terms

are of equal magnitude but opposite sign, so that they

cancel each other. For perturbations to the damping rate,

they have the same sign, leading to the 2s2
h in the de-

nominator of the expression for the covariance.

Physically, the increase in variance—or energy—in the

case of perturbing the damping rate can be understood by

visualizing a pendulum. At maximum amplitude, pertur-

bations increasing the amplitude will increase the poten-

tial energy, while perturbations toward the state of rest

will increase the kinetic energy, both leading to an in-

crease in energy and thus variance.

While the stabilizing influence of noise has been dis-

cussed in the geophysical contexts (e.g., by Sardeshmukh

et al. 2001, 2003), this is to our best knowledge the first

explicit application to an oscillator.

d. Spectra

The spectral matrix S( f ) of a system given by (5) is

given as (Gardiner 1983; Kleeman 2011):

S( f )5
1

2p
(M1 if )21 ~Q(MT 2 if )21 , (15)

where f is the frequency. For the case of a linear damped

oscillator driven by additivewhite noise, in (10)M5L. For

this system the spectrum of each component is given as

P( f )5
s2
«

n2 1 (v6 f )2
. (16)

If the eigenvalues l1/2 of M are purely real, then the

spectrum is red with a maximum at f 5 0. If the eigen-

values ofM are complex, the spectrum has amaximumat

f 5v and its width is a function of the damping rate n.

The larger the damping rate, the broader and less

peaked is the spectrum.

For the multiplicatively perturbed oscillators,

M 5 L1 (1/2)E2, and the component power spectral den-

sity is obtained by inserting (11) into (15) to give

P
d
( f )5

s2
« 11

s2
h

2n2s2
h

 !

n1
1

2
s2
h

� �2

1 (v6 f )2
and

P
f
( f )5

s2
« 12

s2
h

2n

 !

n2
1

2
s2
h

� �2

1 (v6 f )2
. (17)
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The spectra for themultiplicatively perturbed oscillators

for our examples are shown in Fig. 3d. We see that

perturbations to the frequency v result in a broader

spectrum, while perturbations to the damping rate lead

to a more pronounced spectral peak.

3. Model description and experiments

The numerical simulations of the coupled ocean–

atmosphere system analyzed in this work are conducted

with the CCSM4 developed by the National Center for

Atmospheric Research (NCAR) and cover the period

1870–2004 (135 years). The atmospheric component is

the Community Atmosphere Model, version 4 (Gent

et al. 2011). All simulations were conducted with the

finite-volume dynamical core at a resolution of 0.98 3
1.258 with 26 vertical levels and the use of observed car-

bon dioxide concentrations in the atmosphere. The ocean

is simulated by the Parallel Ocean Program, version 2

(Danabasoglu et al. 2012), with 1.08 horizontal resolution
and 40 levels in the vertical. It is also actively coupled

to the Community Ice Code, version 4 (Hunke and

Lipscomb 2008), at 1.08 resolution and the Community

Land Model, version 4 (Lawrence et al. 2011).

Two experiments were conducted: a CNTL and a

simulation where a stochastic parameterization scheme

was used to represent unresolved atmospheric variabil-

ity. The scheme used here is the widely used SPPT

scheme, which perturbs the physical tendencies of tem-

perature, zonal and meridional winds, and humidity at

each time step with a multiplicative random coefficient

(Buizza et al. 1999; Palmer et al. 2009):

›X

›t
5D1 (11 r)�

i

P
i
. (18)

Here, ›X/›t denotes the total tendency in variable X,D

is the tendency from the dynamical core, Pi is the ten-

dency from the ith physics scheme, and r is the Gaussian

distributed zero-mean random perturbation field with

spatial and temporal correlations. Depending on the

implementation, the SPPT scheme uses up to three

patterns with different spatial and time scales. For sim-

plicity, we use here only a single perturbation field with a

spatial decorrelation length scale of 500km and decor-

relation time scale of 6 h, which corresponds to the

fastest evolving perturbation pattern of Palmer et al.

(2009). No effort was made to optimize the spatial and

temporal correlations of the pattern.

This study focuses on three variables: sea surface

temperature (SST), zonal wind at 850hPa (u850), and

vertical pressure velocity (or p velocity) at 500hPa

(v500) in the tropical belt between 208S and 208N. The

vertical p velocity v5 dp/dt is defined as the Lagrangian

rate of change of pressure p with time. Here, we plot

2v500, so that positive values indicate upward large-

scale motion (associated with heating in the free tro-

posphere) and negative values indicate subsidence. The

set of variables is not chosen to produce the most skillful

linear inverse model, but to understand the interplay

between large-scale vertical motions, zonal wind, and

ocean response. Anomalies of SST, u850, and v500 are

obtained by removing the mean annual cycle and linear

trend obtained from the entire record.

For comparisons with the observed record, we use

ERA20C, which spans the years 1900–2010. ERA20C

assimilates surface pressures and surface winds over

the oceans and uses sea surface temperatures from

HadISST2 as lower boundary conditions (Poli et al.

2016). Because of the limited number of observations

used, there are better reanalysis products available for

the atmospheric state, especially for the better observed

period since 1979. However, the consistency between

the atmosphere and SSTs over an extended period

makes the use of ERA20C attractive. We keep in mind

that—especially when it comes to the vertical p velocity—

the reanalysis will be dominated by the model first guess

rather than observations.

For data-reduction purposes all variables of each

dataset were standardized with the spatially averaged

standard deviation of ERA20C and projected onto the

empirical orthogonal functions (EOFs) computed from

ERA20C. The EOFs were computed for each variable

separately and the anomalies subsequently projected

onto the first 10 EOFs of v500 and u850 and the first 30

EOFs for SST. The LIMs are fitted to the state consisting

of the combined principal components of v500 and u850

and SST. These variables were chosen to capture the

interplay between atmospheric and oceanic key players

relevant to ENSO rather than construct the most skillful

LIM. The LIM is primarily used to study the impact of

adding stochastic tendency perturbations to the atmo-

spheric component, while the ocean component was

unchanged. Hence, we did not include a subsurface

ocean variable, which might have added forecast skill

(Newman et al. 2011). While there is some sensitivity to

the details of the standardization as well as the number

of EOFs retained, all findings reported here hold qual-

itatively over a wide range of choices.

4. Results

a. Covariance evolution in model and reanalysis

In this section wewill demonstrate the LIMs’ ability to

capture the basic features of tropical variability. We will

15 OCTOBER 2018 BERNER ET AL . 8407



then investigate the LIMs on a mode-by-mode basis to

gain insight on the mechanisms, by which SPPT affects

the ENSOmode. To evaluate themodel simulations and

LIM, we examine the covariance evolution of v500,

u850, and SST in the tropical belt.

For ERA20C, the largest SST variance is in the

tropical east and central Pacific with a pattern reminis-

cent of El Niño (Fig. 4). The variance swings from a

positive to negative anomaly with decreasing amplitude,

suggestive of a damped oscillation with a period of 4

years or so. The SST signal is accompanied by an at-

mospheric oscillation with the same period. For u850,

the pattern of maximal variance is shifted to the western

tropical Pacific with a secondary maximum over the

Indian Ocean. The covariance of v500 is boomerang

shaped with the two arms extending just north and south

of the equator across the Pacific basin.

For the simulations CNTL and SPPT, the centers of

maximal variance are in the same east and west Pacific

locations (Figs. 5, 6) indicating that the characteristic

features of ENSO variability are captured by the climate

model. The amplitudes in SPPT are notably smaller for

all time lags, leading to a better agreement with those of

ERA20C. This indicates that the oscillation in SPPT is

more damped than in CNTL.

Next, linear inverse models in (5) are fitted by esti-

mating the covariance matrix of each experiment for

a time lag of t0 5 1 month and using (6) and (7) to

determine the effective feedback and noise covariance

matrices. Details of the fitting procedure are described

in appendix A. Note that the empirical fit yields the ef-

fective feedback and noise covariance matrices, M and
~Q, which already include the effects of a potential noise-

induced drift and additional noise covariance term.

The LIM captures the characteristic features of the

covariance evolution in the climate simulations re-

markably well (Figs. 5, 6). For brevity, the covariances

are shown here only for SST and u850. The evolution of

v500 is captured similarly well and available in the

supplementary material. The lagged covariance displays

the same centers of variability as the climate model and

captures the damped oscillation. Note, that while only

1-month lagged covariances were used, the LIM captures

the pattern and amplitude of the covariance evolution

over a wide range of lags up to 2 years. In particular, the

LIM captures the fact that the oscillation in SPPT is

more damped than that in CNTL.

As scalar metrics we compute the spatially averaged

autocorrelations and autocovariances over the tropical

band (Fig. 7). Consistent with the maps, the spatially

averaged autocorrelation has the typical signature of a

damped oscillation. We note that the autocorrelation

curves for the SPPT simulation are overall in much

better agreement with those in ERA20C. The LIM

predicts the autocorrelation and autocovariance re-

markably well up to lags of at least t5 18 months. For

FIG. 4. Diagonal of the autocovariance matrix at lags t5 f1, 6, 12, 18, 24gmonths in ERA20C for (left) v500, (center) u850, and (right)

SST. The contour interval for lags t$ 12 months is half that as for t, 12.
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t. 12 months, the correlation curves for the GCM

simulations are no longer smooth, which is an indication

of insufficient sampling.

b. Linear inverse model eigenmodes

Next, we will investigate if the differences in the

LIMs can be used to understand why SPPT has a better

representation of ENSO variability. Since M is stable,

its eigenvalues are either real and negative or come in

complex conjugate pairs. The associated eigenvectors

or POPs correspond to the least damped modes of the

linearized system (von Storch et al. 1988; Penland

1989). Since these modes decay slower than any other

mode, they can be expected to play an important role in

FIG. 6. As in Fig. 5, but for u850.

FIG. 5. Diagonal of lagged autocovariance matrix for SSTs in simulations CNTL and SPPT and lagged autocovariance matrix as predicted

by a LIM fitted to CNTL and SPPT using 1-month lag covariances. Contour intervals are as in Fig. 4.
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the system dynamics before ultimately decaying. Each

oscillatory POP is complex and describes an evolv-

ing pattern that can be represented by two standing

modes varying in quadrature. In other words, each POP

has the form of the damped oscillator introduced

in section 2. Of special interest is the least damped

oscillatory POP, since its spatial pattern and variabil-

ity has been associated with ENSO (Penland and

Sardeshmukh 1995).

For each eigenmode ofM, the negative inverse of the

real part of the eigenvalue (i.e., its decorrelation time)

is plotted in Fig. 8 against the absolute value of the

imaginary part (i.e., its frequency). Modes with longer

decorrelation times generally tend to be associated

with lower frequencies, while modes with higher fre-

quency tend to have less memory (Fig. 8a). For

ERA20C, the least damped oscillatory mode (circled)

has a period of 45 months and a damping time of

8 months. In the model experiments, this ENSO mode

is associated with periods of 49 (CNTL) and 51 months

(SPPT) and damping times of 17 (CNTL) and 11

(SPPT) months, respectively.

The spatial pattern of this mode is shown for each

component v500, u850, and SST separately (Fig. 9).

FIG. 7. (a) Autocorrelation and (b) autocovariance of SSTs averaged over the tropical band between 208S and

208N. Solid lines are for ERA20C (black), CNTL (blue), and SPPT (red); dashed lines are for LIM predictions. The

lag-0 variance is denoted by circles. Autocorrelations for (c) v500 and (d) u850 are shown.
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Since the POPs are the empirical normal modes of the

system, their sign and contour interval is arbitrary. Here,

they are chosen so that the real part of the SST pattern is

positively correlated with the Niño-3.4 index and the

imaginary part is positively correlated with the index

prior to an El Niño event. The signs for wind and vertical
motion are chosen so that positive SST anomalies in the

east Pacific are associated with anomalous subsidence

and lower-level divergence over the Maritime Conti-

nent. The eigenvectors are normalized to have a length

of unity.

The SST component of the least damped oscillatory

eigenmode has the highest amplitudes in the central and

east Pacific, with a pattern highly reminiscent of El Niño
(Fig. 9). The u850 component has a pronounced dipole

pattern with a negative center over the Maritime Con-

tinent and Indian Ocean and a positive center over the

western Pacific (Figs. 9c,i,o), indicative of anomalous

low-level wind divergence over theMaritime Continent.

This is consistent with the anomalous subsidence over

theMaritime Continent and anomalous convection over

the central Pacific (Figs. 9a,g,m), as typically observed

during the warm phase of ENSO.

The imaginary part of the least damped oscillatory

eigenmode shows anomalous warming in the east Pa-

cific, but as reported in other studies (Penland and

Sardeshmukh 1995; Gehne et al. 2014), the anomalies

are much weaker and confined to a narrow tropical

band (Figs. 9f,l,v). The corresponding wind pat-

tern shows anomalous westerlies over the Maritime

Continent and western Pacific (Fig. 9d) and is highly

correlated with the second EOF of u850 (not shown).

The imaginary part precedes the peak pattern by a

quarter of a period, which amounts to 11 months for

ERA20C, 12 months for CNTL, and 13 months for

SPPT. The peak pattern is then followed by the negative

precursor pattern after another 12 months or so and will

then develop into the La Niña peak pattern after an-

other quarter period.

The model captures the main characteristics of the

peak ENSO pattern with anomalously warm SSTs over

the east Pacific corresponding to subsidence and low-

level wind divergence over the Maritime Continent.

While the ENSO peak and precursor patterns in the

model simulations agree remarkably well with those

from ERA20C, there are pronounced differences in the

associated eigenvalues (Fig. 8a). In particular, the de-

correlation time in SPPT is with td 5 11 markedly

shorter than that in CNTL ðtd 5 17Þ, but still too long

compared with the td 5 8 in ERA20C.

Given that the ENSO POP has the form of a damped

oscillator, we return to the analytical results from sec-

tion 2. From the perturbation experiments we know

that a decrease in decorrelation time—as in experi-

ment SPPT—is consistent with perturbations to the

frequency of an oscillator. Indeed, the parameters

n and v in Fig. 3 were chosen to produce an oscillation

with a period of T5 50 months and decorrelation times

of 17 and 11 months, reflecting the parameters of the

ENSO POPs in CNTL and SPPT. The stabilization

FIG. 8. Eigenvalues of the LIM (a) linear feedback matrix M and (b) forcing covariance matrix ~Q. For M, the

inverse of the real part of the eigenvalues equals the damping time scale (or decorrelation time) and is plotted

against the imaginary part (equaling the frequency). Values for the least damped oscillatory mode are circled. For
~Q, the eigenvalues are plotted as function of rank. Symbols indicate eigenvalues for ERA20C (black squares),

CNTL (blue circles), and SPPT (red crosses).
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from the noise-induced drift directly transfers to a

broadening of the spectrum (Fig. 3d), resembling the

difference in the power spectra of CNTL and SPPT

(Fig. 1).

While the simple model explains the mechanisms, by

which stochastic perturbations to the atmosphere can

change the spectrum of ENSO, it does not provide an

explanation for the observed reduction in variance

(Fig. 2). Recall that perturbations to the frequency did

not result in a change to the equilibrium variance in (14).

We will return to this question after analyzing the sec-

ond LIM component—the noise covariance matrix.

c. Eigenanalysis of noise covariance matrix ~Q

Next, we have a closer look at the noise covariance

matrix ~Q. Since ~Q is positive definite and real, its ei-

genvalues are positive and can be viewed as the

variance associated with the corresponding eigen-

vectors. The latter form an orthogonal basis and are

sometimes referred to as ‘‘noise EOFs.’’ Overall the

FIG. 9. (left) Real and (right) imaginary parts of the least damped oscillatory eigenmode (or principal oscillation pattern) corresponding

to the mature phase of ENSO in the left panels and the characteristic precursor pattern in the right panels. Components of the mode are

shown for v500, u850, and SST for (a)–(f) ERA20C, (g)–(l) CNTL, and (m)–(r) SPPT. Decorrelation time td and period T are given by

corresponding eigenvalues are indicated above each panel group.

8412 JOURNAL OF CL IMATE VOLUME 31



eigenvalues decay rapidly as function of rank (Fig. 8b).

For SPPT, the largest eigenvalues are markedly larger

than in CNTL and are in close agreement with those

in ERA20C.

Maps of the noise variance given as diagonal of ~Q

are shown in Fig. 10. The noise variance has the largest

amplitude in the zonal wind component and a very

small amplitude for SST. This is consistent with the

notion of atmospheric fluctuations acting as forcing

for the ocean. For SPPT, the noise variance of u850 is

characterized by a dipole pattern with centers over

the Indian Ocean and west Pacific and an additional

maximum over the Maritime Continent. These cen-

ters are also evident for ERA20C and CNTL, although

for ERA20C, variability over the Maritime Continent

dominates.

d. Impact of differences in feedback and noise
covariance matrices

Our results suggest that the stochastic perturbations

of SPPT introduce a noise-induced drift resulting in a

stabilization of the feedback matrix. Returning to the

simple oscillator example in (5), we saw that multipli-

cative noise resulted in an additional, positive definite

term in the effective noise covariance matrix ~Q. For

perturbations to the frequency, this additional noise

term is equal and opposite to the stabilization, so that

the overall variance is unchanged in (14).

Here, we attempt to separate these two effects in the

climate simulations by solving for the covariance in two

different versions of (7). To isolate the effect of the

changes to the feedback matrix, we solve (7) for the

equilibrium covariance matrix Cexp1, assuming M5MSPPT

and ~Q5 ~QCNTL (‘‘exp1’’):

M
SPPT

C
exp1

1C
exp1

MT
SPPT 1

~Q
CNTL

5 0: (19)

This was done by transforming (19) into the eigenmode

space ofMSPPT, in whichMSPPT is diagonal [see appendix

B, after Penland and Sardeshmukh (1995)]. The differ-

ence between the resulting equilibrium covariance ma-

trix and that in the CNTL simulation, Cexp1 2CCNTL, is

displayed in Fig. 11. For comparison, this figure shows

also the difference CSPPT 2CCNTL obtained from solving

(7) assuming M5MCNTL and ~Q5 ~QCNTL and M5MSPPT

and ~Q5 ~QSPPT. While the variances in Fig. 2 are com-

puted directly from the anomaly fields, they are here

derived from the LIM and transformed back from EOF

space, so that the differences between Fig. 11 and Fig. 2

are the result of sampling error and EOF truncation.

Including only the changes to the feedback matrix,

M5MSPPT, results in an overall reduced equilibrium

variance for all variables (Figs. 11b,e,h) with patterns

similar to the differences between SPPT and CNTL, but

weaker amplitudes. This confirms that the feedback

matrix MSPPT is more stable than MCNTL and that the

noise-induced stabilization explains about half of the

reduction of variance in the SPPT simulation.

For completeness, we perform the complementary

calculation of estimating the effect of only including the

FIG. 10. Diagonal elements of the noise covariance matrix for model experiments (a),(d),(g) ERA20C; (b),(e),(h) CNTL; and (c),(f),(i)

SPPT. Maps for variables (top) v500, (middle) u850, and (bottom) SST are shown.
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change in the noise covariancematrix, ~Q5 ~QSPPT, keeping

M5MCNTL unchanged (‘‘exp2’’):

M
CNTL

C
exp2

1C
exp2

MT
CNTL 1

~Q
SPPT

5 0: (20)

This results in an overall increase in the equilibrium

variance when compared to CNTL (Figs. 11c,f,i). This is

consistent with an additional forcing term in the noise

covariance matrix and the increase in amplitude of the

leading eigenvalues (Fig. 8b).

Overall, the increase of equilibrium variance in ex-

periment exp2 is weaker than that variance decrease of

exp1, which suggests that the noise-induced stabilization

in MSPPT outweighs the noise-induced destabilization of
~QSPPT. While this is consistent with the overall decrease

in variance in the climate simulations with SPPT, it does

not explain the amplitude of the decrease nor the causes

for this ‘‘asymmetry.’’ This manifests the limitation of

the current approach, including, for example, the vio-

lation of the assumption of linearity.

5. Discussion: Climate simulations forced by
repeating climatological annual cycle of SST

a. Variability of monthly anomalies

We have hypothesized here that the perturbations

introduced by SPPT to the atmospheric component of

CCSM4 perturb the frequency of the El Niño–Southern
Oscillation, resulting in a noise-induced drift that

enhances the damping of ENSO. To further test this

hypothesis, we ask what the effect of SPPT would be if

there was no ENSO. The simple model suggests that if

there is no oscillation, there is no frequency to perturb

and presumably no stabilizing noise-induced drift. To

confirm this, we performed two additional 10-yr uncoupled

atmospheric GCM integrations with and without SPPT

using the atmospheric component of CCSM4 with a pre-

scribed repeating climatological annual cycle of SSTs as

boundary forcing. By experimental design, there is no

ENSO, indeed no interannual SST variability, in these

uncoupled integrations.

Comparing the variance of zonal wind and vertical

p velocities in the two simulations shows that their dif-

ferences are very small (Fig. 12). In most places, the

differences are not statistically significant at the 95%

confidence level, although there is a region in the

western Pacific just north of the equator, where SPPT

might increase the monthly variability in these vari-

ables. This confirms that SPPT does not reduce the in-

terannual wind variability in the absence of interannual

SST variability.

This is consistent with the results of Christensen

et al. (2017), who also performed uncoupled atmo-

spheric simulations, but with observed interannually

varying SSTs as lower boundary forcing. These simu-

lations have the ENSO signal in the lower boundary

forcing, but no freely evolving coupled ENSO mode.

This study found that introducing SPPT reduced the

atmospheric variability, but the change was less pro-

nounced than in the fully coupled simulation. In con-

clusion, the model must have a freely evolving coupled

FIG. 11. (a),(d),(g) Diagonal elements of the difference between LIM covariances C0(CNTL) and C0(SPPT), obtained by solving the

fluctuation–dissipation relationship for M5MCNTL and ~Q5 ~QCNTL, and M5MSPPT and ~Q5 ~QSPPT, respectively. (b),(e),(h) Diagonal el-

ements of the difference betweenC0(CNTL) and the LIM covarianceC0(exp1) assumingM5MSPPT and ~Q5 ~QCNTL. (c),(f),(i) Difference

between C0(CNTL) and the LIM C0(exp2) assuming M5MCNTL and ~Q5 ~QSPPT. Maps for variables (top) v500, (middle) u850, and

(bottom) SST are shown.
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ENSO mode for SPPT to have a strong impact on in-

terannual variability.

b. Westerly wind bursts

Previous studies demonstrated that extreme westerly

wind anomalies over the equatorial western-central

Pacific—so-called westerly wind bursts (WWBs)—can

play a key role in the outbreak of El Niño events, since

they have the potential to trigger eastward-propagating

oceanic Kelvin waves, which lead to a warming in the

equatorial central and eastern Pacific (e.g., McPhaden

and Taft 1988; Yu and Rienecker 1998; Lengaigne et al.

2004). The state-dependent nature of the stochastic

WWB forcing is thought to be particularly important

(Jin et al. 2007; Levine and Jin 2010, 2017). A change of

either the magnitude of WWBs or their state de-

pendence would constitute a physical mechanism by

which SPPT can influence the development and evolu-

tion of ENSO. Following Levine and Jin (2017),

Christensen et al. (2017) analyzed the state dependence

of WWB and found indeed a reduction in the state

dependence of WWB in the simulations with SPPT.

However, in coupled simulations it is extremely difficult

to disentangle the causality of WWBs and SSTs in the

west Pacific, since on one hand wind anomalies are

thought to be the primary forcing for ocean variability,

but on the other are modulated themselves by the SSTs

(Tziperman and Yu 2007).

To see if the magnitude of WWBs has been changed

independently of the state dependence, we analyze the

distribution of zonal wind anomalies in our simulations

with climatological SSTs. We take wind anomalies as

the deviation from the daily climatology (Harrison and

Vecchi 1997) and subsequently compute the running

5-day mean to pick out longer lasting events. WWBs are

defined as events, where the smoothed anomalous zonal

winds exceeded 5m s21. Histograms of the zonal wind

anomalies show that SPPT reduces extreme easterly as

well as westerly wind anomalies (Fig. 12c). In particular,

the frequency of WWBs is reduced.

Importantly, this change in the tails of 5-day running

means does not imprint on the standard deviation of

monthly mean anomalies (Fig. 12b). We conclude that

in addition to a reduced state dependence (Christensen

et al. 2017), the reduced occurrence of strong WWB in

SPPT might play a key role in reducing ENSO vari-

ability. Future work will be targeted at understanding

why SPPT reduces the extreme zonal wind anomalies.

6. Conclusions

With the aim of understanding changes in ENSO ir-

regularity, we fitted a linear inverse model to climate

simulations with and without the stochastic parameteri-

zation scheme SPPT. In particular, we set out to under-

stand the dynamical mechanisms by which perturbations

to the atmosphere reduced tropical SST and wind vari-

ability and decreased the decorrelation time of ENSO

variability.

In the experiment with stochastic perturbations, the

least damped oscillatory eigenmode or principal oscil-

lation pattern (POP) is characterized by a more damped

oscillation, reducing the decorrelation time of the mode

from 17 to 11 months, which according to the Wiener–

Khinchin theorem explains the broadening of the spec-

trum (Fig. 1). This is an improvement in comparison to

the 20th-century reanalysis from ECMWF, in which this

mode has a decorrelation time of about 8 months.

The fact that this least damped coupled mode has a

pattern and period characteristic for ENSO supports

the theory of ENSO as a damped oscillation of the

coupled ocean–atmosphere system forced by stochastic

FIG. 12. Difference in variance of monthly anomalies of (a) v500 and (b) u850 in 10-yr-long simulations forced by repeating clima-

tological SSTs. Shown is the difference between simulations with and without SPPT. Note that the contour interval in (a) is one-fourth and

in (b) it is half of that in the respective panels in Figs. 2c and 2f. Differences that are statistically significant at the 95% confidence level are

stippled. (c) Histogram of 5-day runningmean zonal wind anomalies in CNTL (blue) and SPPT (red). Westerly wind bursts are defined as

zonal wind anomalies exceeding 5m s21 (black vertical line).
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atmospheric noise (Penland and Sardeshmukh 1995;

Kleeman and Moore 1997; Moore and Kleeman 1999;

Gehne et al. 2014).Note that independent of the nature of

ENSO, each POP has by definition the form of a damped

oscillator (von Storch et al. 1988; Penland 1989; Kleeman

2011), so that differences among LIMs can more gener-

ally be used to diagnose model differences and differ-

ences between model and nature.

Turning to the simplemodel of a stochastically damped

linear oscillator, we studied the effect of perturbing its

frequency versus its damping rate. We found that per-

turbations to the damping rate result in increased vari-

ance and amore peaked spectrum,whereas perturbations

to the frequency reduce the temporal memory and

broaden the spectrum (Fig. 3). The GCM results con-

sisting of a decrease in decorrelation time and broadening

of the spectrum are thus consistent with perturbations to

the frequency of the least damped eigenmode of the LIM.

The perturbations to the frequency result in further

stabilizing the LIM’s feedback matrix. This stabilization

is due to the so-called noise-induced drift. The stabiliz-

ing influence of noise in geophysical contexts has been

discussed (e.g., Sardeshmukh et al. 2001, 2003) for the

example of Rossby waves in a stochastically fluctuating

medium. In our ENSO context, we have shown that the

noise-induced stabilization of the dynamical operator is

sufficiently strong to reduce the variances of SST and

winds. The noise-induced variance reduction has a pat-

tern similar to the difference between SPPT and CNTL,

but weaker magnitude.

Our results also demonstrate some of the complexities

of coupled Earth-system modeling and tuning. The ef-

fect of the stochastic perturbations—used here as proxy

for fast-physics processes—lie in the modulation of a

slow process, here the El Niño–Southern Oscillation.

The effect can therefore only be studied when fully in-

teracting with this slow process (i.e., in a fully coupled

modeling framework), and was not evident in the sta-

tistics of monthly anomalies in atmospheric simulations

with repeated climatological SST forcing.

While a linear inverse model cannot replace coupled

climate models, analyzing the changes to the operator of

the LIM on a mode-by-mode basis allows insights into

the dynamical mechanisms, by which stochastic pertur-

bations to the atmospheric component with time scales

of 6 h can impact tropical interannual climate variability.

Future work will focus on physical mechanisms by

which fast-physics processes impact ENSO, starting with

an in-depth analysis of the impact of SPPT on westerly

wind bursts. Initial results pointed to a reduction of the

occurrence and magnitude of westerly wind bursts as

well as a reduced state dependence (Christensen et al.

2017), which will be investigated further.
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APPENDIX A

Fitting a Linear Inverse Model

To obtain an empirical estimate of the feedback ma-

trix M̂, we estimate Ĉ0 and Ĉ(t0) for a particular time lag

t0 and solve (6) to obtain

M̂(t
0
)5

1

t
0

log[Ĉ(t
0
)Ĉ21

0 ] ,

where log is the matrix logarithm and the hat ‘‘^’’ de-

notes that the operator is estimated from data. For

simplicity, the hat^ is omitted in the main body of the

paper. Subsequently, an estimate of the noise covariance

is obtained by inserting M̂ and Ĉ0 into (7) and solving for
~̂Q. Since ~Q is a covariance matrix, its eigenvalues should

be real and nonnegative. However, for the estimate ~̂Q
this criterion is not always met, since M̂ and Ĉ0 are

subject to sampling errors. Penland and Magorian

(1993) and Penland and Sardeshmukh (1995) contain

detailed discussions of this issue and provide practical

remedies. Following their suggestions, we set negative

eigenvalues of ~̂Q to zero. The resulting empirical model

[Eqs. (1) and (5)] describing the evolution of the state is

called the linear inverse model (LIM; Penland 1989;

Penland andMatrosova 1994) and yields skillful predictions

of the coupled atmosphere–ocean system. Predictions of

the lagged covariance for any lag t can be obtained via

Ĉ(t)5 eM̂tĈ
0
,

where we need to keep inmind that M̂5 M̂t0 and
~̂Q5 ~̂Qt0

have been estimated using a particular lag t0. Ideally,

the validity of the assumptions necessary to fit a LIM

need to be tested and a comprehensive list of tests is laid
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out in Penland and Sardeshmukh (1995). In particular,

the estimates of the M̂ and b~Q should be relatively in-

dependent of t0 as long as t0 . tcrit, where tcrit is the

smallest time scale where the system can be approxi-

mated by a linear process (DelSole 2000; Berner 2005).

Penland and Sardeshmukh (1995) refer to this as a

‘‘t test.’’ Here, we will not conduct any of the proposed

tests, but will demonstrate the validity of the LIM

merely by comparing the covariance evolution of the

model to that predicted by the LIM (Figs. 5, 6).

The theory presented in this section makes the as-

sumption that the noise is white (i.e., that it is d correlated

in time). However, the stochastic parameterization in

the GCM is written as a red-noise process with a decor-

relation time of 6h. More generally, even fast physical

processes tend to be continuous and hence are never

d correlated. Generally speaking, it is still possible to

describe such a system stochastically, as long as the de-

correlation time of the finitely correlated fast processes

are much smaller than those governing the system dy-

namics (Horsthemke and Levefer 1984; Penland 2003).

An example of the impact of generating stochastic per-

turbations with a red rather than white spectrum is

given for the example of the Rossby wave response in

Sardeshmukh et al. (2003).

APPENDIX B

Derivation of Covariance Matrix for a Linear
Stochastic Process

In fitting a LIM, the zero-lag and lagged covariance

matrices from an empirical dataset are used to estimate

the feedback and noise covariancematrices. However, for

certain applications, wemight want to reverse this process

and derive the zero-lag covariance matrix C0 from the

feedback and noise covariancematrices. For this purpose,

we prescribe M and ~Q in the fluctuation–dissipation re-

lationship in (7), and solve for the covariance matrix C0.

To solve for C0, (3) is transformed into normal mode

space (Penland and Sardeshmukh 1995):

bD
0
1D

0
bw 1A5 0, (B1)

where v and wT are the right and adjoint eigenvec-

tors, respectively, and b5wTMww, D0 5wTC0w
w, and

A5wTQww. Sinceb is diagonal, (B1) can be rewritten in

component form:

b
i
D

ij
1D

ij
bw
j 1A

ij
5 0

and solved for the covariance matrix in normal mode

space:

D
ij
52A

ij
=(b

i
1bw

j ) .

Once the elements of D0 are obtained, the covariance

matrix in physical space is derived as

C
0
5 vD

0
vy ,

where y denotes the complex conjugate transpose.
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